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Abstract. Shift schemes are commonly used in non-convex situations when solving unconstrained
discrete-time optimal control problems by the differential dynamic programming (DDP) method.
However, the existing shift schemes are inefficient when the shift becomes too large. In this paper,
a new method of combining the DDP method with a shift scheme and the steepest descent method
is proposed to cope with non-convex situations. Under certain assumptions, the proposed method
is globally convergent and has q-quadratic local conve rgence. Extensive numerical experiments on
many test problems in the literature are reported. These numerical results illustrate the robustness
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1. Introduction

Optimal control has broad applications in diverse areas, such as engineering, eco-
nomics, ecology, etc. This paper considers unconstrained discrete-time optimal
control problems (UDOCP) in the following format:

min
U
L(U) =

N∑
t=1

gt(xt ,ut )+ gN+1(xN+1) (1)

where xt+1 = ft(xt ,ut ), t = 1, 2, . . . , N, (2)

x1 ≡ x̄1 (given and fixed), (3)

X = [xT1 , xT2 , . . . , xTN+1]T , xt ∈ IRn, t = 1, . . . , N + 1, (4)

U = [uT1 ,uT2 , . . . ,uTN ]T , ut ∈ IRm, t = 1, 2, . . . , N. (5)

Here, U is the control policy with controls ut , t = 1, 2, . . . , N ; X is the trajectory
with states xt , t = 1, 2, . . . , N + 1, associated with control policy U; L : IRNm 
→
IR is the total loss function with stagewise loss functions gt : IRn × IRm 
→ IR,
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t = 1, 2, . . . , N , and gN+1 : IRn 
→ IR; ft : IRn×IRm 
→ IRn, t = 1, 2, . . . , N , are
transition functions. In general, the following standard assumptions are imposed:

STANDARD ASSUMPTIONS

1. gt and ft are twice continuously differentiable functions for all t .
2. The level set �(U|0) = {U : L(U) ≤ L(U|0)}, where U|0 is the initial control

policy, is bounded for any U|0 ∈ IRNm.
The differential dynamic programming (DDP) method, a combination of the dy-
namic programming (DP) method and Newton’s method, is the first algorithm
which takes advantage of the special structure of the general UDOCP. The DDP
method was introduced by Mayne [10] in 1966, and was further developed later by
Jacobson and Mayne [6] in 1970. The DDP method does not require discretization
of the control or state space. Hence, it overcomes the dimensionality problem of
DP. Moreover, the DDP method has been proved to have q-quadratic local con-
vergence under the standard assumptions [7, 12]. Besides these, when Mayne [10]
introduced the DDP method, he suggested an inexact line search scheme for the
DDP method as well. This was further refined by Jacobson and Mayne [6] in 1970.
The line search scheme ensures the DDP method to be globally convergent [14].

However, the DDP method could break down when the problem is non-convex.
In 1984, Yakowitz and co-workers [12, 14] employed a shifting technique from
nonlinear programming (NLP) to deal with non-convex situations. They also proved
that the DDP method with a shift scheme together with the standard inexact line
search scheme ensures global convergence. Nevertheless, they did not mention
how the shift should be computed. In 1991, Liao and Shoemaker [7] suggested
an ‘adaptive shift’ procedure to determine the shift. Their procedure consists of
two steps. In their Step 1, a constant shift is selected. While in their Step 2, an
active shift is calculated for each stage by using the minimum eigenvalue of the
Hessian matrix. They also proved that the DDP method with the adaptive shift
will eventually converge quadratically. The adaptive shift, however, is problem
dependent. In addition, shift schemes are inefficient when the shift is too large.
The goal of this paper is to introduce a new scheme to overcome these shortfalls.

In the context of NLP, shift schemes can be viewed as a kind of compromises
between Newton’s method and the steepest descent (SD) method [9]. When solving
some very nonlinear UDOCP, all existing shift schemes become inefficient, partly
because the SD method was not used. This fact motivates the authors to develop a
new efficient one for UDOCP by adopting the SD method.

The SD method for UDOCP was also sketched by Mayne [10] in 1966. Since
its convergence rate is only linear, it is rarely used in numerical implementation.
However, when the second derivatives could not provide useful information, the
SD method becomes attractive. In this paper, the SD method is revised so that it
can be combined with the DDP method with a shift scheme to form a new efficient
method for solving the general UDOCP.
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This paper is organized as follows. Following this introduction, a globally con-
vergent DDP method with a shift scheme is summarized in Section 2. In Section 3,
the SD method for UDOCP is addressed. A modified algorithm together with a
global convergence analysis for the SD met hod is provided. In Section 4, a new
efficient method for solving the general UDOCP is proposed. This method is a
combination of the DDP method with a shift scheme and the revised SD method.
Global and local convergences of the new method are also proved. In Section 5,
numerical results on eight test problems available in the literature are presented to
show the robustness and efficiency of the new method. Finally, in Section 6, some
concluding remarks are drawn.

2. The DDP method for UDOCP

The DDP method is an iterative method that combines the DP technique and New-
ton’s method. In each iteration, a nominal control policy Ū is given. The aim of each
iteration is to find a successor control policy U so that the total loss L(U) < L(Ū).
This successor control policy will be used as the new nominal control policy for
the next iteration unless some stopping criterion is met.

Generally speaking, the DDP method consists of two sweeps in each iteration:
the backward sweep which computes the feedback laws and the forward sweep
which updates the control policy and trajectory. These sweeps and some conver-
gence results are summarized in the following sub-sections. Notice that all the
functions, derivatives, vectors and matrices in the following are evaluated at the
nominal control policy Ū and the corresponding trajectory X̄.

2.1. THE BACKWARD SWEEP WITH A SHIFT SCHEME

The goal in the backward sweep is to find linear feedback laws for N individual
stages,

ut = ūt + ρt + Pt (xt − x̄t ), t = 1, 2, . . . , N, (6)

where ρt ∈ IRm and Pt ∈ IRm×n are computed backwardly by solving a se-
quence of sub-problems. Suppose that [u]i ∈ IR, i = 1, 2, . . . , m, is the i-th
element of any vector u ∈ IRm; ∇ug ∈ IRm is the gradient vector of any func-
tion g(u) ∈ C1(IRm, IR); Juf ∈ IRn×m is the Jacobian matrix of any function
f (u) ∈ C1(IRm, IRn); and ∇2

u,ug ∈ IRm×m, ∇2
x,ug ∈ IRn×m, ∇2

u,xg ∈ IRm×n

and ∇2
x,xg ∈ IRn×n are the second-order derivatives of any function g(x,u) ∈

C2(IRn×m, IR), where x ∈ IRn and u ∈ IRm. The following procedure is the
backward sweep of the DDP method with a shift scheme presented by Yakowitz
and Rutherford [14]. The aim of using a shift scheme is to deal with non-convex
situations.
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2.1.1. The backward sweep with a shift scheme:

1. Initialize the following variables,

θN+1 = 0, (7)

σN+1 = ∇xN+1gN+1, (8)

SN+1 = ∇2
xN+1,xN+1

gN+1. (9)

2. For stage t = N,N − 1, . . . , 1, compute the followings,

αt = ∇xt gt + (Jxt ft )
T σt+1, (10)

βt = ∇ut gt + (Jut ft )
T σt+1, (11)

At = (Jxt ft )
T St+1(Jxt ft )+ ∇2

xt ,xt gt +
n∑
i=1

[σt+1]i (∇2
xt ,xt [ft ]i ), (12)

Bt = (Jut ft )
T St+1(Jxt ft )+ ∇2

ut ,xt gt +
n∑
i=1

[σt+1]i (∇2
ut ,xt [ft ]i), (13)

Ct = (Jut ft )
T St+1(Jut ft )+ ∇2

ut ,ut gt

+
n∑
i=1

[σt+1]i (∇2
ut ,ut [ft ]i)+ st · Im, (14)

ρt = −C−1
t βt , (15)

Pt = −C−1
t Bt , (16)

θt = θt+1 − ρTt βt , (17)

σt = αt + PTt βt , (18)

St = At + PTt Bt , (19)

where st is a shift parameter to ensure that Ct is positive definite.

2.2. THE FORWARD SWEEP WITH A LINE SEARCH SCHEME

In the forward sweep, the nominal control policy and the corresponding trajectory
are updated based upon the feedback laws obtained in the backward sweep and
the transition functions. The following procedure is the forward sweep of the DDP
method with the inexact line search scheme in Jacobson and Mayne [6]. The aim
of using a line search scheme is to ensure global convergence.

2.2.1. The forward sweep with a line search scheme

1. Select three small positive scalars θ̄ , κ ≤ 0.01 and λ̄ ≤ 0.01.
2. Initialize the line search parameter λ = 1.
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3. Repeat the following inexact line search procedure until the control policy for
this iteration is found.
(a) Forward sweep:

(i) Set x1(λ) ≡ x̄1.
(ii) For stage t = 1, 2, . . . , N , compute:

ut (λ) = ūt + λ ρt + Pt [xt (λ)− x̄t ], (20)

xt+1(λ) = ft
(
xt (λ),ut (λ)

)
. (21)

(b) Compute the loss L
(
U(λ)

)
.

(c) Check the reduction in loss:

If the right-hand extreme of the Goldstein and Armijo conditions is
satisfied, that is,

L
(
U(λ)

) − L(
Ū

) ≤ −λ · κ · θ1, (22)

then the control policy for this iteration is found. So, let

U = U(λ), (23)

X = X(λ), (24)

and stop the inexact line search procedure. Furthermore, if

θ1 ≤ θ̄ · max{1, |L(U)|}, (25)

then U is the optimal control policy.
Otherwise, the inexact line search procedure should be continued by
cutting the step size, such as, setting λ = λ/2 and go to a). However, if
the new step size is too small, that is

λ < λ̄, (26)

then the inexact line search procedure fails to reduce the total loss while
satisfying (22). Then the algorithm fails.

2.3. GLOBAL CONVERGENCE AND LOCAL CONVERGENCE

Under some assumptions, the DDP method has been shown to converge glob-
ally [14] and locally with q-quadratic rate [7, 12]. The following lemmas ensure
that the DDP method given above converges globally and is locally q-quadratically
convergent.

THEOREM 2.1 Suppose that the standard assumptions hold. Let {U|k} be the se-
quence generated by the DDP method. Then any accumulation point of the control
policy sequence {U|k} is a stationary control policy with respect to L(U).
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Proof. From the DDP method, it is easy to see that U|k ∈ �(U|0) for all k’s.
Therefore, from the standard assumptions, the two sequences {U|k} and {X|k} are
bounded, where X|k is the trajectory associated with U|k. Then from the standard
assumptions and the DDP method, there exists an M > 0 such that st ≤ M for all
t’s in all iterations, where st is defined in (14). From the Theorem of [14] (p. 42),
the result can be established. �
THEOREM 2.2 Suppose that the standard assumptions hold, and gt ’s and ft ’s
have continuous third-order derivatives in level set �(U|0) for any U|0 ∈ IRNm.
Let {U|k} be the sequence generated by the DDP method, and {U|k} converge to
U∗ which is a solution of UDOCP, and X∗ be the trajectory associated with U∗.
If st ≡ 0 for all t’s and all k’s, then the DDP method is locally q-quadratically
convergent.

Proof. From the DDP method, it is easy to see that U|k ∈ �(U|0) for all k’s.
Therefore, from the standard assumptions, the two sequences {U|k} and {X|k} are
bounded, where X|k is the trajectory associated with U|k. From the proof of The-
orem 1 in [7], it can be easily seen that the closed bounded convex set D can be
replaced by any closed bounded setD. Therefore, from Theorem 1 in [7], the result
can be established. �

3. The SD method for UDOCP

The SD method for UDOCP proposed in this paper is an iterative method that
combines the DP technique and the SD method for NLP. Similar to DDP, the SD
method for UDOCP also consists of two sweeps in each iteration: the backward
sweep and the forward sweep. These sweeps and the convergence analysis of the
SD method are addressed in the following sub-sections.

3.1. THE BACKWARD SWEEP

Same as the DDP method, the goal in the backward sweep is to find control laws
backwardly by solving a sequence of sub-problems. However, instead of using
Newton’s method at each stage in the DDP method, the SD method is adopted.
Hence, the negative gradient of each stagewise objective function is taken as the
search direction. The detail of the procedure is described as follows.

Let  ut ∈ IRm and  xt ∈ IRn be the perturbations at stage t about the nominal
control and state, respectively, that is,

 ut = ut − ūt , t = 1, 2, . . . , N, (27)

 xt = xt − x̄t , t = 1, 2, . . . , N + 1. (28)
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Let Rt+1(xt+1) ∈ IR be the linear approximation to the cumulative loss from
stage t + 1 to stage N + 1, that is,

Rt+1(xt+1) = rt+1 + σ Tt+1 xt+1, (29)

where rt+1 ∈ IR and σt+1 ∈ IRn. Let Vt(xt ,ut ) ∈ IR be the cumulative value at
stage t , that is,

Vt(xt ,ut ) = gt(xt ,ut )+ Rt+1
(
ft(xt ,ut )

)
. (30)

Then, the linear approximation to Vt(xt ,ut ) can be expressed as follows:

LP(Vt)(xt ,ut ) = vt + αTt  xt + βTt  ut , (31)

where

vt = gt + rt+1 ∈ IR, (32)

αt = ∇xt gt + (Jxt ft )
T σt+1 ∈ IRn, (33)

βt = ∇ut gt + (Jut ft )
T σt+1 ∈ IRm. (34)

From the DP decomposition, the sub-problem at stage t is:

min
ut

Vt (xt ,ut ). (35)

Hence, to solve the sub-problem by the SD method, the search direction is taken as
−βt
‖βt‖2

. (Notice that βt �= 0, otherwise ūt is the solution to the sub-problem.) Thus
the control law can be written as:

ut = ūt − λ
(
βt

‖βt‖2

)
, (36)

where λ (0 < λ̄ ≤ λ ≤ 1) is the line search parameter of the SD method; λ̄ is a
small fixed parameter. Therefore, the linear approximation to the cumulative loss
from stage t to stage N + 1 can be obtained by substituting (36) into (31). This
gives

Rt(xt ) = rt + σ Tt  xt , (37)

where

rt = vt − λ‖βt‖2 ∈ IR, (38)

σt = αt ∈ IRn. (39)

Hence, assuming RN+2(xN+2) = 0 and repeating the above steps from stage N +1
to stage 1 backwardly, N control laws can be found. In summary, the backward
sweep of the SD method can be written as follows:
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3.1.1. The backward sweep

1. Initialize the following variables,

θN+1 = 0, (40)

σN+1 = ∇xN+1gN+1. (41)

2. For stage t = N,N − 1, . . . , 1, compute the followings,

αt = ∇xt gt + (Jxt ft )
T σt+1, (42)

βt = ∇ut gt + (Jut ft )
T σt+1, (43)

θt = θt+1 + ‖βt‖2, (44)

σt = αt . (45)

3.2. THE FORWARD SWEEP WITH A LINE SEARCH SCHEME

To ensure the global convergen ce, some line search scheme is necessary. To de-
velop an inexact line search rule for the SD method based on the Goldstein and
Armijo Conditions, the following lemmas and theorems are important. Notice that
all the functions, derivatives, vectors and matrices in the following are evaluated at
a fixed control policy and the corresponding trajectory.

LEMMA 3.1

∇xt L =
{ ∇xt gt + (Jxt ft )

T (∇xt+1L), t = 1, 2, . . . , N ,
∇xN+1gN+1, t = N + 1.

(46)

Proof. For t = 1, 2, . . . , N , it is straightforward to see

∇xt L =
N+1∑
i=t

∇xt gi

= ∇xt gt +
N+1∑
i=t+1

(
∂ xt+1

∂ xt

)T (
∂ gi

∂ xt+1

)T

= ∇xt gt + (Jxt ft )
T (∇xt+1L).

Therefore (46) can be obtained. �
LEMMA 3.2 For t = 1, 2, . . . , N ,

∇ut L = ∇ut gt + (Jut ft )
T (∇xt+1L). (47)
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Proof. For t = 1, 2, . . . , N , it is straightforward to see

∇ut L =
N∑
i=t

∇ut gi

= ∇ut gt +
N∑

i=t+1

(
∂ xt+1

∂ ut

)T (
∂ gi

∂ xt+1

)T

= ∇ut gt + (Jut ft )
T (∇xt+1L).

Therefore (47) can be obtained. �
LEMMA 3.3 Let θt = − d rt

d λ , t = 1, 2, . . . , N , where rt is obtained by (38), then

θt =
N∑
i=t

‖βi‖2 and θ1 ≥ θ2 ≥ · · · ≥ θN ≥ 0. (48)

Proof. From (38) and (32), we have

rt = (gt − λ‖βt‖2)+ rt+1

=
N∑
i=t
gi − λ

N∑
i=t

‖βi‖2 + rN+1

=
N+1∑
i=t
gi − λ

N∑
i=t

‖βi‖2. (49)

Thus,

d rt
dλ

= −
N∑
i=t

‖βi‖2. (50)

This proves the results. �
LEMMA 3.4

∇UL = 0 ⇐⇒ βt = 0, t = 1, 2, . . . , N ⇐⇒ θ1 = 0. (51)
Proof. First we prove

σt = ∇xt L for t = 1, · · · , N + 1 (52)

by induction backwardly in t . From (41) and Lemma 3.1, we have

σN+1 = ∇xN+1gN+1 = ∇xN+1L. (53)

Now, we assume that

σt+1 = ∇xt+1L. (54)
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Then by Lemma 3.2 and (43),

∇ut L = ∇ut gt + (Jut ft )
T (∇xt+1L)

= ∇ut gt + (Jut ft )
T σt+1

= βt . (55)

Moreover, by (45), (42), and Lemma 3.1,

σt = αt
= ∇xt gt + (Jxt ft )

T σt+1

= ∇xt gt + (Jxt ft )
T (∇xt+1L)

= ∇xt L. (56)

Thus, by the induction principle, (52) is true. Therefore, (52) and (55) imply that
the first part of the theorem holds.

Now, the remaining part of the theorem can be shown easily. From Lemma 3.3,

θ1 =
N∑
t=1

‖βt‖2. (57)

Therefore,

θ1 = 0 ⇐⇒ ‖βt‖2 = 0, t = 1, 2, . . . , N

⇐⇒ βt = 0, t = 1, 2, . . . , N. �
From the results of Lemma 3.3 and Lemma 3.4, the inexact line search rule based
on the Goldstein and Armijo conditions for the SD method can be written as
follows:

L(U)− L(Ū) ≤ −λ · κ · θ1, (58)

where κ ∈ (0, 0.01) is a small fixed parameters. Notice that, (58) is the right-hand
extreme of the conventional Goldstein and Armijo conditions only. The left-hand
extreme of the conventional Goldstein and Armijo conditions is not necessary be-
cause the use of a backtracking strategy can avoid excessively small steps. In con-
clusion, the forward sweep of the globally convergent SD method can be written
as follows:

3.2.1. The forward sweep with a line search scheme:

1. Select three small positive scalars θ̄ , κ ≤ 0.01 and λ̄ ≤ 0.01.

2. Initialize the line search parameter λ = 1.
3. Repeat the following inexact line search procedure until the control policy for

this iteration is found.
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(a) Forward sweep:
(i) Set x1(λ) ≡ x̄1.

(ii) For stage t = 1, 2, . . . , N , compute:

ut (λ) =
{

ūt − λ βt
‖βt‖2

, if βt �= 0,
ūt , if βt = 0,

(59)

xt+1(λ) = ft
(
xt (λ),ut (λ)

)
. (60)

(b) Compute the loss L
(
U(λ)

)
.

(c) Check the reduction in loss:

If the right-hand extreme of the Goldstein and Armijo conditions is
satisfied, that is,

L
(
U(λ)

) − L(
Ū

) ≤ −λ · κ · θ1, (61)

then the control policy for this iteration is found. So, let

U = U(λ), (62)

X = X(λ), (63)

and stop the inexact line search procedure. Furthermore, if

θ1 ≤ θ̄ · max{1, |L(U)|}, (64)

then U is the optimal control policy.
Otherwise, the inexact line search procedure should be continued by
cutting the step size, such as, setting λ = λ/2. However, if the new step
size is too small, that is

λ < λ̄, (65)

then the inexact l ine search procedure fails to reduce the total loss while
satisfying (61).

3.3. CONVERGENCE ANALYSIS

Since the SD method is a stagewise NLP procedure, so the theorem of global
convergence of descent methods in NLP can be applied (Theorem 2.5.1 in [4]).
The following theorem is a revised version for the SD method.

THEOREM 3.1 Suppose that the standard assumptions hold. Let {U|k} be the
sequence generated by the SD method for UDOCP, where k is the iteration index.
Then the SD method either stops in finitely many iterations with {∇UL|k} = 0 for
some k or generates an infinite sequence such that {∇UL|k} → 0.
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Proof. From the SD method, it is easy to see that U|k ∈ �(U|0) for all k’s.
Therefore, from the standard assumptions, the two sequences {U|k} and {X|k} are
bounded, where X|k is the trajectory associated with U|k.

Now we verify that {U|k} satisfies the Goldstein and Armijo conditions (58).
Equations (55), (57), (59), and the Taylor expansion of L(U) indicate

L(U|k+1)− L(U|k) = −λθ1 + o(‖U|k+1 − U|k‖). (66)

Since κ ∈ (0, 0.01), (59) indicates that by choosing a proper λ, (58) can be always
satisfied.

In addition, the standard assumptions imply that ∇UL|k is uniformly continuous
in �(U|0). Then from Theorem 2.5.1 in [4], the results of the theorem hold. �

4. A combined method for UDOCP

In this section, a new method that combines the DDP method with a shift scheme
and the SD method is proposed to solve the general UDOCP. The algorithm and its
convergence analysis are addressed in the following sub-sections.

4.1. THE ALGORITHM

The new method consists of two parts: the DDP method with a shift scheme and
the SD method. In each part, two sweeps are involved: the backward sweep and
the forward sweep. The algorithm of the new method is listed as follows. The key
strategy of the method is to adopt the DDP method with a shift scheme whenever
possible.
1. The DDP method with a shift scheme:

(a) The backward sweep:
Perform the backward sweep as stated in Section 2.1 except when the shift
st must be greater than a pre-selected non-negative scalar ŝ to guarantee
the positive definiteness of all Ct ’s. Whenever this occurs, the iteration is
restarted by using the SD Method.

(b) The forward sweep:
Perform the forward sweep as stated in Section 2.2.

2. The SD method:

(a) The backward sweep:
Perform the backward sweep as stated in Section 3.1.

(b) The forward sweep:
Perform the forward sweep as stated in Section 3.2.
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4.2. CONVERGENCE ANALYSIS

To prove the global convergence of the proposed method, the following lemmas
for the DDP method are required.

LEMMA 4.1 For θt obtained in (17), we have

θ1 ≥ θ2 ≥ · · · ≥ θN ≥ 0. (67)
Proof. From (17) and (15),

θt =
N∑
i=t
βTi C−1

i βi, t = 1, 2, . . . , N. (68)

Since Ct , t = 1, 2, . . . , N, are positive definite, the result follows directly. �
LEMMA 4.2

∇UL = 0 ⇐⇒ βt = 0, t = 1, 2, . . . , N ⇐⇒ θ1 = 0. (69)
Proof. Following exactly the same steps as discussed in the proof of Lemma 3.4,

this lemma can be proved easily. �
The following theorems provide the global convergence and locally q-quadratic
convergence of the proposed method described in Section 4.1.

THEOREM 4.1 Suppose that the standard assumptions hold. Let {U|k} be the
sequence generated by the method described in Section 4.1 for UDOCP, where k is
the iteration index. Then the method described in Section 4.1 either stops in finitely
many iterations or generates an infinite sequence such that {∇UL|k} → 0.

Proof. From the method described in Section 4.1, it is easy to see that U|k ∈
�(U|0) for all k’s. Therefore, from the standard assumptions, the two sequences
{U|k} and {X|k} are bounded, where X|k is the trajectory associated with U|k.
Therefore, ∇UL|k is uniformly continuous in �(U|0). In addition, the positive
definiteness of Ct matrices and the definition of positive scalar ŝ guarantee that
the angle between U|k+1 − U|k and −∇UL(U|k) is uniformly bounded away from
orthogonality.

Mayne in [10] (equation (26)) has achieved the following result

L(U|k+1)− L(U|k) = −λ(1 − λ

2
)θ1 + o(λ2). (70)

This ensures that (22), or the Goldstein and Armijo conditions, holds for DDP. On
the other hand, (66) guarantees that (58), or the Goldstein and Armijo conditions,
holds for the SD method. Therefore, we can say that the sequence {U|k} satisfies
the Goldstein and Armijo conditions.

The above discussions indicate that the conditions of Theorem 2.5.1 in [4] are
all satisfied. Therefore, using Theorem 2.5.1 in [4], our results hold. �
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THEOREM 4.2 Suppose that the standard assumptions hold, and gt ’s and ft ’s
have continuous third-order derivatives in level set �(U|0) for any U|0 ∈ IRNm.
Let {U|k} be the sequence generated by the method described in Section 4.1, and
{U|k} converge to U∗ which is a solution of UDOCP, and X∗ be the trajectory
associated with U∗. If st ≡ 0 for all t’s and all k’s in a neighborhood of U∗, then
the method described in Section 4.1 is locally q-quadratically convergent.

Proof. From the principle of the combined method, we know that the DDP
method with a shift scheme will be adopted whenever possible. In addition, the
assumption that {U|k} converge to U∗ and st ≡ 0 for all t’s and all k’s in a neigh-
borhood of U∗ ensures that the DDP method with a shift scheme should be used in
that neighborhood. Thus by Theorem 2.2, the proposed combined method is locally
q-quadratically convergent. �

5. Numerical experiment

In this section, the proposed method is examined on eight test problems available in
the literature. These test problems are provided in the Appendix. The objectives of
the experiment are to show the robustness and efficiency of the proposed method.

To implement the tests, the parameter of the Goldstein and Armijo conditions,
κ , is set to 1e-8; the tolerance of line search, λ̄, is set to 1e-10; and the parameter
of the stopping criterion, θ̄ , is set to 1e-12.

For each test problem, 144 tests are carried out with different combinations of
three parameters:
1. The number of decision times N : Four choices of the time stages are investig-

ated, N + 1 = 10, 30, 50, and 100.
2. The starting point U|0: In order to have unbiased results, nine starting points

are selected, [U|0]i = 0, ±0.2, ±0.4, ±1 and ±10, for i = 1, 2, . . . , Nm.
3. The maximum shift allowed ŝ: To show the robustness and efficiency of the

proposed method, ŝ = 100, 1000, 10000, and ŝ = ∞ are selected. Notice that
the case of ŝ = ∞ is just the conventional DDP method with a shift scheme.

The numerical results of the first three test problems with N + 1 = 100 are dis-
played in Tables I–III, respectively. Since the numerical results of the remaining
five test problems share the similar behaviors, they have been omitted. In each
table, the followings are reported:

Maximum shift: max(s)

Total number of iterations

(Number of iterations using the SD Method): k(kSD)

Final θ1: θ1|k
Final Euclidean norm of the gradient of the total loss: ‖∇UL|k‖2
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6. Concluding remarks

In this paper, a new method that combines the DDP method with a shift scheme and
the SD method is proposed to solve the general UDOCP. Based on our analysis and
discussion in earlier sections, we can see that this new method en joys the following
advantages.

First, the proposed method is robust. In Section 4.1, the proposed method is
shown to have global convergence under the standard assumptions. From the nu-
merical experiments reported in Section 5, all cases can converge to local minim-
izers rapidly. These results confirm the global convergence property. Furthermore,
the proposed method can solve a problem when the DDP method with a shift
scheme failed (see Table III). This shows the robustness and attractiveness of the
proposed method.

In addition, the proposed method is extremely efficient. In Section 4.1, the
proposed method is shown to be locally q-quadratically convergent under some as-
sumptions. This property is also verified in our numerical experiment in Section 5.
Besides the proposed method could save up to 99.9% in the number of iterations
in the experiment (Table I). These results indicate the efficiency of the proposed
method.

Since the Newton method for UDOCP shares the same computational structure
as the DDP method [13], it is expected that the Newton method can be also com-
bined with the SD method to form a new globally convergent and efficient method
for solving UDOCP.

7. Acknowledgements

This research was partially supported by the Research Grants Council of Hong
Kong under Grant CUHK4392/99E and Grant FRG/99-00/II-23 of Hong Kong
Baptist University.

References

1. Bertsekas, D. P. (1982), Projected Newton methods for optimization problems with simple
constraints, SIAM Journal of Control and Optimization 20, 221–246.

2. Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ.

3. Di Pillo, G., Grippo, L. and Lampariello, F. (1983), A class of structured quasi-Newton
algorithms for optimal control problems, IFAC Applications of Nonlinear Programming to Op-
timization and Control, Edited by H. E. Rauch, International Federation of Automatic Control,
Pergamon Press, NY, 101–107.

4. Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, John Wiley and Sons,
Chichester.

5. Gill, P. E., Murray, W. and Wright, M. H. (1981), Practical Optimization, Academic Press,
London.

6. Jacobson, D. H. and Mayne, D. Q. (1970), Differential Dynamic Programming, American
Elsevier, New York.



416 CHI-KONG NG, LI-ZHI LIAO AND DUAN LI

7. Liao, L. Z. and Shoemaker, C. A. (1991), Convergence in unconstrained discrete-time
differential dynamic programming, IEEE Transactions on Automatic Control 36, 692–706.

8. Liao, L. Z. and Shoemaker, C. A. (1992), Comparison of differential dynamic programming and
Newton’s method for discrete-time optimal control Problems, Technical Report CTC92TR97,
Cornell University.

9. Luenberger, D. G. (1989), Linear and Nonlinear Programming, Second Edition, Addison-
Wesley, Reading, MA.

10. Mayne, D. Q. (1966), A second-order gradient method for determining optimal trajectories of
non-linear discrete-time systems, International Journal of Control 3:1, 85–95.

11. Murray, D. and Yakowitz, S. (1981), The application of optimal control methodology to
nonlinear programming problems, Mathematical Programming 21, 331–347.

12. Murray, D. M. and Yakowitz, S. J. (1984), Differential dynamic programming and New-
ton’s method for discrete optimal control problems, Journal of Optimization Theory and
Applications 43:3, 395–414.

13. Pantoja, J. F. A. De O. (1988), Differential dynamic programming and Newton’s method,
International Journal of Control 47:5, 1539–1553.

14. Yakowitz, S. and Rutherford, B. (1984), Computational aspects of discrete-time optimal
control, Applied Mathematics and Computation 15, 29–45.

Appendix

A. Testing problems

Problem 1: [8]

min
N∑
t=1




n∑
i=1

([xt ]i + 0.25)4 +
m∑
j=1

([ut ]j + 0.5)4


 +

n∑
i=1

([xN+1]i + 0.25)4

where

xt+1 = Axt + But + µ · (xTt Cut ) · e, t = 1, 2, . . . , N,

x1 = [0, . . . , 0]T ∈ IRn,

A ∈ IRn×n, [A]i,k =



0.5 if k = i,
0.25 if k = i + 1,
−0.25 if k = i − 1,

i, k = 1, 2, . . . , n,

B ∈ IRn×m, [B]i,j = i − j
n+m, i = 1, 2, . . . , n, j = 1, 2, . . . , m,

C ∈ IRn×m, [C]i,j = i + j
n+m, i = 1, 2, . . . , n, j = 1, 2, . . . , m,

e = [1, · · · , 1]T ∈ IRn,
µ = 1, n = 4, m = 2.



A GLOBALLY CONVERGENT AND EFFICIENT METHOD FOR UDOCP 417

Problem 2: [8]

min
N∑
t=1

‖xt‖2
2

[
sin2

(‖ut‖2
2

m

)
+ 1

]
+ ‖xN+1‖2

2

where

[xt+1]i = sin([xt ]i )+ [K ·W(ut )]i , i = 1, 2, . . . , n, t = 1, 2, . . . , N,
[x1]i = i

(2n) , i = 1, 2, . . . , n,

K ∈ IRn×m, [K]i,j = (i+j)
(2n) , i = 1, 2, . . . , n, j = 1, 2, . . . , m,

W : IRm 
→ IRm, [W(ut )]j = sin([ut ]j ), j = 1, 2, . . . , m,
n = 4, m = 2.

Problem 3: [14]

min
N∑
t=1

exp
(‖xt‖2

2

) [
sin2

(‖ut‖2
2

m

)
+ 1

]
+ exp

(‖xN+1‖2
2

)

where

xt+1 = xt + K ·W(ut ), t = 1, 2, . . . , N,

[x1]i = i
20 , i = 1, 2, . . . , n,

K ∈ IRn×m, [K]i,j = (i+j)
100 , i = 1, 2, . . . , n, j = 1, 2, . . . , m,

W : IRm 
→ IRm, [W(ut )]j = sin([ut ]j ), j = 1, 2, . . . , m,

n = 5, m = 5.

Problem 4: [1]

min
k

2

N∑
t=1

(xTt Qxt + ru2
t )+

k

2
xTN+1QxN+1

where

xt+1 =
[
rr1 k
−k 1

]
xt +

[
r0
k

]
ut, t = 1, 2, . . . , N,

x1 =
[
r15
5

]
, Q =

[
rr2 0
0 1

]
, r = 6, k = 1

(N+1) ,

n = 2, m = 1.
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Problem 5: [3]

min
5k

2
‖x1‖2

2 + 5ku2
1 + 5k

N∑
t=2

(‖xt‖2
2 + u2

t

) + 5k

2
‖xN+1‖2

2

where

xt+1 = xt + 5k

[
c
[
1 − ([xt ]2)

2
] [xt ]1 − [xt ]2 + ut
[xt ]1

]
, t = 1, 2, . . . , N,

x1 = [0, 1]T , k = 1
(N+1) ,

n = 2, m = 1.

Problem 6: [3]

min k

N∑
t=1

(x2
t + u2

t )

where

xt+1 = xt + k · (x2
t − ut ), t = 1, 2, . . . , N − 1,

x1 = 1, k = 1
(N+1) ,

n = 1, m = 1.

Problem 7: [11]

min
1

2

N∑
t=1

{[
xt + exp(ut)

]2 + u2
t

}

where

xt+1 = xt + exp(ut), t = 1, 2, . . . , N − 1,

x1 = 0,

n = 1, m = 1.

Problem 8: [7]

min
N∑
t=1

sin2(x2
t + u2

t )+ sin2(x2
N+1)

where

xt+1 = x2
t + xtut , t = 1, 2, . . . , N,

x1 = 1
2 ,

n = 1, m = 1.
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Table I. Numerical results of Problem 1 with N+1=100∗

[U|0]i ,∀i ŝ max(s) k(kSD) θ1|k ‖∇UL|k‖2

0 ∞ 0 5 (0) 9e-15 8e-08

100 0 5 (0) 9e-15 8e-08

1000 0 5 (0) 9e-15 8e-08

10000 0 5 (0) 9e-15 8e-08

0.2 ∞ 1e71 526 (0) 1e-13 3e-07

100 0 5 (1) 5e-12 2e-06

1000 0 5 (1) 5e-12 2e-06

10000 0 5 (1) 5e-12 2e-06

−0.2 ∞ 0 4 (0) 4e-20 1e-10

100 0 4 (0) 4e-20 1e-10

1000 0 4 (0) 4e-20 1e-10

10000 0 4 (0) 4e-20 1e-10

0.4 ∞ 1e163 937 (0) 1e-12 8e-07

100 0 8 (2) 5e-17 6e-09

1000 0 8 (2) 5e-17 6e-09

10000 0 8 (2) 5e-17 6e-09

−0.4 ∞ 1e87 187 (0) 2e-17 4e-09

100 0 6 (1) 2e-13 4e-07

1000 0 6 (1) 2e-13 4e-0 7

10000 0 6 (1) 2e-13 4e-07

1 ∞ le301 † 8e-03 2e+16

100 0 9 (3) 4e-17 6e-09

1000 0 9 (3) 4e-17 6e-09

10000 0 9 (3) 4e-17 6e-09

−1 ∞ 1e207 † 4e-01 1e+66

100 1 10 (2) 3e-16 2e-08

1000 1 10 (2) 3e-16 2e-08

10000 1 10 (2) 3e-16 2e-08

∗Computer overflow was observed for [U|0]i = ±10, i = 1, · · · , n.
† The stopping criterion was not reached after 10000 iterations.
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Table II. Numerical results of Problem 2 with N+1=100

[U|0]i ,∀i ŝ max(s) k(kSD) θ1|k ‖∇UL|k‖2

0 ∞ 1 7 (0) 2e-19 1e-09
100 1 7 (0) 2e-19 1e-09

1000 1 7 (0) 2e-19 1e-09
10000 1 7 (0) 2e-19 1e-09

0.2 ∞ 10000 25 (0) 2e-14 2e-07
100 100 11 (3) 1e-15 2e-08

1000 1000 18 (2) 9e-17 3e-08
10000 10000 25 (0) 2e-14 2e-07

−0.2 ∞ 10000 21 (0) 2e-15 2e-07
100 100 73 (3) 1e-21 1e-10

1000 1000 18 (1) 5e-13 2e-06
10000 10000 21 (0) 2e-15 2e-07

0.4 ∞ 1000 30 (0) 5e-17 1e-08
100 100 19 (2) 1e-17 4e-09

1000 1000 30 (0) 5e-17 1e-08
10000 1000 30 (0) 5e-17 1e-08

−0.4 ∞ 1000 239 (0) 3e-18 5e-09
100 100 27 (2) 2e-15 7e-09

1000 1000 239 (0) 3e-18 5e-09
10000 1000 239 (0) 3e-18 5e-09

1 ∞ 1000 27 (0) 1e-27 5e-13
100 100 30 (2) 1e-21 4e-10

1000 1000 27 (0) 1e-27 5e-13
10000 1000 27 (0) 1e-27 5e-13

−1 ∞ 1e12 687 (0) 2e-18 2e-09
100 100 197 (154) 2e-18 9e-10

1000 1000 416 (1) 6e-15 2e-07
10000 10000 324 (1) 2e-15 1e-07

10 ∞ 1e12 2925 (0) 2e-13 4e-05
100 100 764 (321) 1e-16 1e-08

1000 1000 2255 (5) 1e-18 4e-10
10000 10000 2699 (7) 6e-13 3e-07

−10 ∞ 1e9 2661 (0) 8e-18 1e-09
100 100 1241 (29) 5e-16 3e-08

1000 1000 1668 (7) 2e-18 2e-09
10000 10000 2446 (3) 3e-16 1e-08
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Table III. Numerical results of Problem 3 with N+1=100∗

[U|0]i ,∀i ŝ max(s) k(kSD) θ1|k ‖∇UL|k‖2

0 ∞ 1 517 (0) 1e-10 1e-05

100 1 517 (0) 1e-10 1e-05

1000 1 517 (0) 1e-10 1e-05

10000 1 517 (0) 1e-10 1e-05

0.2 ∞ 1e86 206 (0) 4e-11 7e-06

100 10 13 (1) 4e-11 2e-08

1000 10 13 (1) 4e-11 2e-08

10000 10 13 (1) 4e-11 2e-08

−0.2 ∞ 1e78 2647 (0) 1e-10 1e-05

100 100 17 (1) 3e-11 2e-08

1000 100 17 (1) 3e-11 2e-08

10000 100 17 (1) 3e-11 2e-08

−0.4 ∞ Computer overflow while initialization

100 1 15 (3) 4e-11 7e-09

1000 1 15 (3) 4e-11 7e-09

10000 1 15 (3) 4e-11 7e-09

∗Computer overflow was observed for [U|0]i = 0.4,±1,±10, i = 1, · · · , n.


